For more than 100 years the small, industrial town of Finspång in southeastern Sweden, with its woods, boulders, lakes and seventeenth-century castle, has been at the forefront of developing and manufacturing turbines.
Most recently, for example, the company invested in their own 3D printing facility for repairs, serial-manufacturing and development of power generation parts including the development of new burners that allow their gas turbines to operate on hydrogen.
Gas turbines, with their short ramp-up times and flexible applications, play a crucial role in the energy transition, says Jöcker. Solar and wind technologies are going to cover a large part of power generation. But because of their volatility, alternative power systems such as gas turbines are still required to balance the grid.
While ZEHTC showcases the role of gas turbines in our future energy systems, it goes a step further, too, using a microgrid to manage and optimize the storage of excess electricity from their solar panels and turbine testing in batteries and hydrogen. “Such microgrids will become more and more important where different energy systems need to work together,” says Jöcker.
Now here is where things really get interesting. With renewable energy storage available and a hydrogen-based system in place, thanks to the new burners researchers have been developing, the gas turbines stabilizing the grid could run on carbon-free fuels.